Preparatory Problems

Solutions to the tasks

"Bonding the World with Chemistry"

49th INTERNATIONAL CHEMISTRY OLYMPIAD
Nakhon Pathom, THAILAND
Task lists

<table>
<thead>
<tr>
<th>Theoretical part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Dimerization of Acetic Acid</td>
<td>4</td>
</tr>
<tr>
<td>Task 2. Solubility of Calcite</td>
<td>5</td>
</tr>
<tr>
<td>Task 3. Expansion of Ideal Gas and Thermodynamics of Liquid Mixing</td>
<td>5</td>
</tr>
<tr>
<td>Task 4. Vibrational Frequency of a Diatomic Molecule</td>
<td>6</td>
</tr>
<tr>
<td>Task 5. Water-gas-shift Reaction</td>
<td>7</td>
</tr>
<tr>
<td>Task 6. Camphor in Benzene</td>
<td>8</td>
</tr>
<tr>
<td>Task 7. Gas and Liquid</td>
<td>8</td>
</tr>
<tr>
<td>Task 8. Decomposition of Nitrous Oxide</td>
<td>9</td>
</tr>
<tr>
<td>Task 9. Avogadro’s Number</td>
<td>10</td>
</tr>
<tr>
<td>Task 10. Buffer from Biological Acid: Lysine</td>
<td>10</td>
</tr>
<tr>
<td>Task 11. Amperometric Titration: Titration of Pb$^{2+}$ with Cr$_2$O$_7^{2-}$</td>
<td>13</td>
</tr>
<tr>
<td>Task 12. Conductometric Titration</td>
<td>14</td>
</tr>
<tr>
<td>Task 13. Titration of Cu and Zn in Metal Alloy</td>
<td>14</td>
</tr>
<tr>
<td>Task 14. Spectrophotometric Determination of Iron</td>
<td>15</td>
</tr>
<tr>
<td>Task 15. Basic Electrochemistry</td>
<td>17</td>
</tr>
<tr>
<td>Task 16. Calculation of Concentration</td>
<td>18</td>
</tr>
<tr>
<td>Task 17. Small Molecule Activation by Frustrated Lewis Pairs</td>
<td>19</td>
</tr>
<tr>
<td>Task 18. Silver Iodide</td>
<td>20</td>
</tr>
<tr>
<td>Task 19. Perovskite Structure</td>
<td>21</td>
</tr>
</tbody>
</table>
Task 20. Quantum Numbers and Atomic Orbitals
Task 21. Radioactivity of Iodine and Nuclear Equations
Task 22. Structure and Chemistry of Sodium Chloride
Task 23. Natural Chelator from Shrimp Shell
Task 24. Compound Identification and Related Chemistry
Task 25. Isomerism of Octahedral Fe Complexes
Task 26. Stoichiometry and Structure Determination
Task 27. Atropine
Task 28. Synthesis of Building Blocks for Fluorescent Markers
Task 29. Synthesis towards Anatoxin-a
Task 30. Total Synthesis of Illudin C
Task 31. Total Synthesis of μ-Opioid Receptor (MOR) Agonists
Task 32. Pericyclic Reaction
Task 33. Stereoisomers without Stereocenter
Solution to the Tasks

Task 1. Dimerization of Acetic Acid

1.1) The reaction can be represented as \(2\text{CH}_3\text{COOH} \rightleftharpoons (\text{CH}_3\text{COOH})_2 \).

If we begin with, say, 100.0 mol CH\(_3\)COOH and 92.0\% dimerizes, then 8.0 mol will be present at equilibrium. The 92.0 mol that react give rise to 46.0 mol dimers. The total number of moles present is therefore 54.0. Hence using the data at 298 K, the equilibrium constant, \(K_p \), is given by

\[
K_p = \frac{P(CH_3COOH)_2}{(PCH_3COOH)^2} = \frac{X(CH_3COOH)_2 P_{tot}}{(XCH_3COOH P_{tot})^2} = \frac{(46.0/54.0)(0.200)}{(8.0/54.0)(0.200)^2} = 194
\]

From equation \(\Delta G^\circ = -RT \ln K_p \),

At 298 K, \(\Delta G^\circ = -RT \ln K_p \)
\[= -(8.314 \text{ J K}^{-1}\text{mol}^{-1})(298 \text{ K}) \ln (194)\]
\[= -13.0 \text{ kJ mol}^{-1}\]

At 318 K, \(\Delta G^\circ = -RT \ln K_p \)
\[= -(8.314 \text{ J K}^{-1}\text{mol}^{-1})(318 \text{ K}) \ln (37.3)\]
\[= -9.57 \text{ kJ mol}^{-1}\]

Applying the equation \(\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \):

The method for the calculation is to write the two equations

\[
\Delta G^\circ(298 \text{ K})= -13.0 \text{ kJ mol}^{-1} = \Delta H^\circ - (298) \Delta S^\circ
\]
\[
\Delta G^\circ(318 \text{ K})= -9.57 \text{ kJ mol}^{-1} = \Delta H^\circ - (318) \Delta S^\circ
\]

and solve the equations simultaneously.

Then \(\Delta H^\circ = -64.1 \text{ kJ mol}^{-1} \) and \(\Delta S^\circ = -170 \text{ J K}^{-1}\text{mol}^{-1} \).

1.2) Applying the Le Chatelier’s principle, an increase of pressure should

\[\checkmark\] favor the dimerization.

\[\bigcirc\] not favor the dimerization.

1.3) The extent of dimerization

\[\checkmark\] decreases with increasing the temperature.

\[\bigcirc\] increases with increasing the temperature.
Task 2. Solubility of Calcite

According to \(\Delta G_{sol}^o = -RT \ln K_{sp} = \Delta H_{sol}^o - T \Delta S_{sol}^o \),
we have \(\ln K_{sp} = -\Delta H_{sol}^o/(RT) + \Delta S_{sol}^o/R \).

Assuming that \(\Delta H_{sol}^o \) and \(\Delta S_{sol}^o \) are temperature-independent,
\[\ln \left(\frac{K_{sp1}}{K_{sp2}} \right) = \frac{-\Delta H_{sol}^o}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]
\[\ln \left(\frac{9.50}{2.30} \right) = \frac{-\Delta H_{sol}^o}{R} \left(\frac{1}{273} - \frac{1}{323} \right) \]
Solving this equation to get \(\Delta H_{sol}^o = -21 \text{ kJ mol}^{-1} \).

Task 3. Expansion of Ideal Gas and Thermodynamics of Liquid Mixing

3.1) \(\Delta U = 0, \quad q = -w \)
\[w = -(1.00 \text{ atm})(2.42-0.200 \text{ dm}^3)(101.325 \text{ J dm}^{-3} \text{ atm}^{-1}) \]
\[= -225 \text{ J} \]
\[q = 225 \text{ J} \]
\[\Delta S_{surr} = -225 \text{ J/295.4 K} = -0.762 \text{ J K}^{-1} \]
\[\Delta S_{sys} = [(0.100 \text{ mol})(8.3145 \text{ J mol}^{-1} \text{ K}^{-1}) (295.4 \text{ K}) \ln(2.42 \text{ dm}^3/0.200 \text{ dm}^3)]/(295.4 \text{ K}) = 2.07 \text{ J K}^{-1} \]
\[\Delta S_{univ} = 2.07 + (-0.762) = 1.31 \text{ J K}^{-1} \]

3.2) \(\Delta H_{mix} = \Delta V_{mix} = 0 \)

The other functions are given by these equations:
\[\Delta G_{mix} = RT \sum_i x_i \ln x_i \quad \text{and} \quad \Delta S_{mix} = -R \sum_i x_i \ln x_i. \]

The mole fraction of A is 3.00/(3.00+5.00) = 0.375.
The mole fraction of B is 1.000-0.375 = 0.625.
\[\Delta G_{mix} = (8.314 \text{ J mol}^{-1} \text{ K}^{-1})(298.0 \text{ K})\{0.375\ln(0.375)+0.625\ln(0.625)\} = -1639 \text{ J mol}^{-1} \]
\[\Delta S_{mix} = -(8.314 \text{ J mol}^{-1} \text{ K}^{-1})\{0.375\ln(0.375)+0.625\ln(0.625)\} = 5.50 \text{ J K}^{-1} \text{ mol}^{-1} \]
Task 4. Vibrational Frequency of a Diatomic Molecule

4.1) To find the reduced mass of CX, \(\mu_{CX} \):

\[
E_0 = \left(0 + \frac{1}{2} \right) h\nu = \frac{1}{2} h\nu
\]

\[
E_1 = \left(1 + \frac{1}{2} \right) h\nu = \frac{3}{2} h\nu
\]

\[
\Delta E = E_1 - E_2 = \left(\frac{3}{2} - \frac{1}{2} \right) h\nu = h\nu
\]

\[
\Delta E = h\nu \left(\frac{1}{\lambda} \right) = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} \quad ; \quad \nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}
\]

\[
\frac{c}{\lambda} = \frac{1}{2\pi} \sqrt{\mu}
\]

\[
k = 4\pi^2 c^2 \mu \left(\frac{1}{\lambda} \right)^2
\]

\[
\mu = \frac{k}{4\pi^2 c^2 \left(\frac{1}{\lambda} \right)^2}
\]

\[
\mu = \frac{1.903 \times 10^3}{4(3.14)^2 (2.9979 \times 10^{10} \text{ cm} \cdot \text{s}^{-1})^2 (2170.0 \text{ cm}^{-1})^2}
\]

\[
\mu = 1.140 \times 10^{-26} \text{ kg} = 6.866 \text{ amu}
\]

\[
\mu = 6.866 \text{ amu}
\]

4.2) To find mass of the atom X, \(m_x \):

\[
\mu_{CX} = \frac{m_c m_x}{m_c + m_x}
\]

\[
\mu_{CX} \left(m_c + m_x \right) = m_c m_x
\]

\[
\mu_{CX} m_c + \mu_{CX} m_x = m_c m_x
\]

\[
m_c m_x - \mu_{CX} m_x = \mu_{CX} m_c
\]

\[
m_x = \frac{\mu_{CX} m_c}{m_c - \mu_{CX}}
\]

\[
m_x = \frac{6.866 \times 12.011}{12.011 - 6.866} = \frac{82.47}{5.145} = 16.03
\]

Thus, atom X should be oxygen.
Task 5. Water-gas-shift Reaction

5.1) The mole fraction of H$_2$ in the reactor, $X_{\text{H}_2} = \frac{n_{\text{H}_2}}{n_{\text{H}_2} + n_{\text{CO}_2} + n_{\text{H}_2\text{O}} + n_{\text{CO}}} = 0.475 = 0.475$.

Thus, $P_{\text{H}_2} = X_{\text{H}_2}P_{\text{total}} = (0.475)(1.00 \text{ atm}) = 0.475 \text{ atm}$.

And likewise, $P_{\text{CO}_2} = 0.475 \text{ atm}$ and $P_{\text{H}_2\text{O}} = P_{\text{CO}} = 0.025 \text{ atm}$

$K = \frac{P_{\text{H}_2}P_{\text{CO}_2}}{P_{\text{H}_2\text{O}}P_{\text{CO}}} = \frac{(0.475)(0.475)}{(0.025)(0.025)} = 3.6 \times 10^2$

Therefore, $\Delta G^o = -RT \ln K = -(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(273 \text{ K}) \ln(3.6 \times 10^2) = -13.4 \text{ kJ mol}^{-1}$.

5.2) The kinetics data given reflects the forward rate of the WGS reaction. The only rate law that is consistent with the given data is $r_f = k_fP_{\text{CO}}P_{\text{H}_2\text{O}}$, and $k_f = 4.4 \times 10^{-3} \text{ atm}^{-1} \text{ s}^{-1}$.

Thus, $X = (4.4 \times 10^{-3} \text{ atm}^{-1} \text{ s}^{-1})(0.28 \text{ atm})(0.72 \text{ atm}) = 8.9 \times 10^{-4} \text{ atm} \text{ s}^{-1}$.

5.3) $k_b = k_f/K = (4.4 \times 10^{-3} \text{ atm}^{-1} \text{ s}^{-1})/(3.6 \times 10^2) = 1.2 \times 10^{-5} \text{ atm}^{-1} \text{ s}^{-1}$.

So during the normal course of the reaction,

$r = r_f - r_b = k_fP_{\text{CO}}P_{\text{H}_2\text{O}} - k_bP_{\text{CO}}P_{\text{H}_2} = (4.4 \times 10^{-3} \text{ atm}^{-1} \text{ s}^{-1})(0.14 \text{ atm})(0.14 \text{ atm}) - (1.2 \times 10^{-5} \text{ atm}^{-1} \text{ s}^{-1})(0.36 \text{ atm})(0.36 \text{ atm}) = 8.44 \times 10^{-5} \text{ atm} \text{ s}^{-1}$.

5.4) $\Delta G = \Delta G^o + RT \ln Q = (-13.4 \text{ kJ mol}^{-1}) + (8.314 \text{ J mol}^{-1} \text{ K}^{-1})(273 \text{ K}) \ln \left(\frac{(0.36)(0.36)}{(0.14)(0.14)} \right) = -9.1 \text{ kJ mol}^{-1}$

5.5) The reaction CO$_2$H(ads) \rightarrow CO$_2$(ads) + H(ads) is first-order, whose rate can be expressed as rate = k[CO$_2$H] = kθS$_0$ = k'θ, where S$_0$ denotes the maximum number of adsorbed intermediates for this surface.

Thus, θ= rate/k' = $(1.0 \times 10^{11} \text{ molecules s}^{-1} \text{ cm}^{-2})/(2.0 \times 10^{12} \text{ molecules s}^{-1} \text{ cm}^{-2}) = 0.050$.

Solutions to the Preparatory problems: 49$^{\text{th}}$ IChO, Thailand 2017 7
Task 6. Camphor in Benzene

\[X_{\text{ben}} = \frac{n_{\text{ben}}}{n_{\text{ben}} + n_{\text{cam}}} \]

\[n_{\text{ben}} = (100 \, \text{cm}^3)(0.877 \, \text{g cm}^{-3})(1 \, \text{mol/78.1 g}) = 1.12 \, \text{mol} \]

\[n_{\text{cam}} = (24.6 \, \text{g})(1 \, \text{mol/152.2 g}) = 0.162 \, \text{mol} \]

\[X_{\text{ben}} = \frac{1.12 \, \text{mol}}{1.12 \, \text{mol} + 0.162 \, \text{mol}} = 0.874 \]

\[P_{\text{ben}} = (X_{\text{ben}})(P^0_{\text{ben}}) = (0.874)(100 \, \text{torr}) = 87.4 \, \text{torr} \]

\[\text{mass}_{\text{ben}} = (100 \, \text{cm}^3)(0.877 \, \text{g cm}^{-3})(1 \, \text{kg/1000 g}) = 0.0877 \, \text{kg} \]

molality of camphor in solution = \frac{0.162 \, \text{mol camphor}}{0.0877 \, \text{kg benzene}} = 1.85 \, \text{mol kg}^{-1}

\[\Delta T = K_f m = (5.12 \, ^\circ \text{C kg mol}^{-1})(1.85 \, \text{mol kg}^{-1}) = 9.46 \, ^\circ \text{C} \]

Since pure benzene freezes at 5.50 \, ^\circ \text{C}, the solution will freeze at -3.96 \, ^\circ \text{C}.

Task 7. Gas and Liquid

7.1) According to the graph, the volume becomes zero at \(T = -100 \, ^\circ \text{C} \). This means that the absolute temperature should be calculated as \(T (K) = ^\circ \text{C} + 100 \) (not \(T (K) = ^\circ \text{C} + 273.15 \)).

If \(V_1 = 15 \, \text{cm}^3 \), \(T_1 = -50 \, ^\circ \text{C} + 100 = 50 \, \text{K} \), and \(T_2 = 100 \, ^\circ \text{C} + 100 = 200 \, \text{K} \), then we have

\[(15 \, \text{cm}^3/50 \, \text{K}) = (V_2/200 \, \text{K}) \]

Therefore, \(V_2 = (15 \, \text{cm}^3)(200 \, \text{K})/(50 \, \text{K}) = 60 \, \text{cm}^3 \).

7.2) From Dalton’s law, the total vapor pressure is the sum of the individual vapor pressures:

\[P_{\text{total}} = P_B + P_C \] \hspace{2cm} (1)

Using the Raoult’s law, the total pressure may be obtained by substituting each \(P \) term with \(P_i^o \times X_i \), where \(P_i^o \) is vapor pressure above pure liquid \(i \) and \(X_i \) is mole fraction of liquid \(i \):

\[P_{\text{total}} = (P_B^o \times X_B) + (P_C^o \times X_C) \] \hspace{2cm} (2)

We know from the question that there are 7 mol of liquid. We obtain the respective mole fractions \(X \): the mole fraction of \(\text{B} \) is 3/7 and the mole fraction of \(\text{C} \) is 4/7. Substituting values of \(X_i \) and \(P_i^o \) into equation (2) yields the total pressure \(P_{\text{total}} \) as follows

\[P_{\text{total}} = (100.1 \, \text{kPa} \times 3/7) + (60.4 \, \text{kPa} \times 4/7) \]

\[= 42.9 \, \text{kPa} + 34.5 \, \text{kPa} \]

So \(P_{\text{total}} = 77.4 \, \text{kPa} \)
7.3) From the definition of mole fraction X, we say

$$X_{vaporB} = \frac{\text{moles of B in the vapor}}{\text{total number of moles in the vapor phase}}$$

The number of moles n_i are directly proportional to the partial pressure P_i if we assume that each vapor behaves as an ideal gas (we assume here that T and V are constant). Accordingly, we say

$$X_{vaporB} = \frac{\text{pressure of B}}{\text{total pressure}}$$

Substituting numbers from question 7.2:

$$X_{vaporB} = \frac{42.9 \text{ kPa}}{77.4 \text{ kPa}} = 0.554$$

The mole fraction of B in the vapor is 0.554, so it contains 55.4% B. The remainder of the vapor must be C, so the vapor also contains (100-55.4)% = 44.6% of C.

Note that the liquid phase comprises 43% B and 57% C, but the vapor contains proportionately more of the volatile B. We should expect the vapor to be richer in the more volatile component.

Task 8. Decomposition of Nitrous Oxide

8.1) Because the reaction is second order, therefore

$$\frac{1}{[N_2O]_t} - \frac{1}{0.108 \text{ mol dm}^{-3}} = \frac{1.10 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}}{(1250 \text{ s})}$$

$[N_2O]_t = 0.0940 \text{ mol dm}^{-3}$

8.2) Using Arrhenius equation,

$$\ln \left(\frac{k_2}{1.10 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}} \right) = \frac{-234 \times 10^3 \text{ J mol}^{-1}}{8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \left[\frac{1}{873 \text{ K}} - \frac{1}{838 \text{ K}} \right]$$

$$k_2 = 4.23 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$
Task 9. Avogadro’s Number

9.1) Let \(v = a^3 \), the volume of the unit cell

The number of unit cell in volume \(V \) of the silicon sphere = \((V/v) \)

If \(n \) is the number of silicon atoms in the unit cell, the number of silicon atoms in silicon sphere = \(n(V/v) \)

The number of moles of Si in the sphere = \((W/A) \)

The number of silicon atoms in sphere = moles \(\times N_A \).

\[i.e. \quad (W/A)N_A = n(V/v) \]

\[N_A = n(V/v)(A/W) \]

9.2) For a face-centered unit cell, the number of atoms at the 8 corners of cell = 8; the number at the 6 faces = 6. Each corner has \((1/8) \) of atom in unit cell and each face has \((1/2) \) of atom. Thus total number of Si atoms in unit cell = \(8 \times (1/8) + 6 \times (1/2) + 4 = 1 + 3 + 4 = 8. \)

\[n = 8 \]

9.3) The volume \(v \) of the unit cell must be in unit of \(cm^3 \).

\[1 \text{ pm} = 10^{-12} \text{ m} = 10^{-10} \text{ cm} \]

\[N_A = 6.022141 \times 10^{23} \]

Task 10. Buffer from Biological Acid: Lysine

Acid Dissociation Constants

10.1)

\[\text{No, the correct form is shown:} \]

\[H_3N^{\ +} \quad \text{NH}_3^{\ -} \quad \text{CO}^{-} \]
10.2) Lysine dihydrochloride \[\xleftrightarrow{\text{HCl}} \] Lysine hydrochloride

10.3) Given that H_3L^{2+}: the most acidic form

H_2L^+: the first intermediate form

HL: the second intermediate form

L^{-}: the most basic form

\[
C_{H_3L^{2+}} = [H_3L^{2+}] + [H_2L^+] + [HL] + [L^{-}] = 0.1 \text{ mol dm}^{-3}
\]

Total mol of $H_3L^{2+} = (0.100 \text{ mol dm}^{-3})(0.1 \text{ dm}^3) = 0.01 \text{ mol}$

Total mol of $H_3L^{2+} = (\text{mol } H_3L^{2+}) + (\text{mol } H_2L^+) + (\text{mol } HL) + (\text{mol } L^-) = 0.01 \text{ mol}$

At pH = 9.5, $[H^+] = 10^{-9.5} \text{ mol dm}^{-3}$

At pH = 9.5, the equilibrium moles of all forms can be calculated as follow;

\[
\text{mol } H_3L^{2+} = \text{total mol } H_3L^{2+}\left(\frac{[H^+]^3}{[H^+]^3 + K_1[H^+]^2 + K_1K_2[H^+] + K_1K_2K_3}\right) = 1.14 \times 10^{-8} \text{ mol (negligible)}
\]

\[
\text{mol } H_2L^+ = \text{total mol } H_3L^{2+}\left(\frac{K_1[H^+]^2}{[H^+]^3 + K_1[H^+]^2 + K_1K_2[H^+] + K_1K_2K_3}\right) = 2.497 \times 10^{-3} \text{ mol}
\]

\[
\text{mol } HL = \text{total mol } H_3L^{2+}\left(\frac{K_1K_2[H^+]}{[H^+]^3 + K_1[H^+]^2 + K_1K_2[H^+] + K_1K_2K_3}\right) = 6.88 \times 10^{-3} \text{ mol}
\]
\[\text{mol L}^{-1} = \text{total mol}_{H_3L^2^+} \left(\frac{K_1 K_2 K_3}{[H^+]^2 + K_1[H^+][H_2L^+] + K_1 K_2 K_3} \right) = 6.27 \times 10^{-4} \text{ mol} \]

Titration reaction to convert H$_3$L$^2^+$ to the desired forms;

\[\text{H}_3\text{L}^2^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{H}_2\text{L}^+ \]

\[\text{H}_2\text{L}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HL} \]

\[\text{HL} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{L}^- \]

mol of KOH required = \((2.497 \times 10^{-3}) + 2(6.88 \times 10^{-3}) + 3(6.27 \times 10^{-4})\)

\[= 1.814 \times 10^{-2} \text{ mol} \]

cm3 of KOH required = \((\frac{1000 \text{ cm}^3}{0.5 \text{ mol}})(1.813 \times 10^{-2} \text{ mol}) = 36.28 \text{ cm}^3 \]

10.4) In this case, K_{a1} is carboxylic acid K_a, K_{a2} is ammonium K_a, and K_{a3} is substituent K_a.

HL is the second intermediate form

\[[H^+] = \sqrt{\frac{K_{a2} K_{a3} [HL] + K_{a2} K_W}{K_{a2} + [HL]}} \]

Since K_{a2} and K_{a3} are small;

\[[HL] = \frac{(5.00 \text{ g}) \left(\frac{1 \text{ mol}}{146.19 \text{ g}} \right)}{0.100 \text{ dm}^3} = 0.342 \text{ mol dm}^{-3} \]

\[[H^+] = \sqrt{\frac{[10^{-9.06} 10^{-10.54} (0.342)] + [10^{-9.06} 10^{-14}]}{10^{-9.06} + 0.342}} = 1.59 \times 10^{-10} \text{ mol dm}^{-3} \]

pH = 9.80

The alternative calculation is pH = \((\text{p}K_{a2} + \text{p}K_{a3})/2 = (9.06 + 10.54)/2 = 9.80 \).

10.5) \[\text{HL} \overset{\text{L}^- + H^+} \rightleftharpoons K_{a3} = 10^{-10.54} \]

\[\text{HL} + H_2O \rightleftharpoons H_2O^+ + OH^- \quad K_{b2} = \frac{K_W}{K_{a2}} = \frac{10^{-14}}{10^{-9.06}} = 1.15 \times 10^{-5} \]

From question 10.4; \[[H^+] = 1.59 \times 10^{-10} \text{ mol dm}^{-3} \]

\[[OH^-] = K_{b2} \left[\frac{[H^+]}{[H^+]^2} \right] = \frac{10^{-14}}{1.59 \times 10^{-10}} = 6.29 \times 10^{-5} \text{ mol dm}^{-3} \]

At equilibrium;

Solutions to the Preparatory problems: 49th lChO, Thailand 2017
\[[HL] = C_{HL} \left(\frac{K_1 K_2 [H^+]}{[H^+]^3 + K_1 [H^+]^2 + K_1 K_2 [H^+] + K_1 K_2 K_3} \right) \]

Where; \(C_{HL} = 0.342 \text{ M} \)

\[[HL] = 0.250 \text{ M} \]

\[K_{a3} = \frac{[L^-][H^+]}{[HL]} = \frac{10^{-10.54}(0.250)}{1.59 \times 10^{-10}} = 0.0453 \text{ mol dm}^{-3} \]

\[K_{b2} = \frac{[H_2L^+][OH^-]}{[HL]} \]

\[[H_2L^+] = K_{b2} \left(\frac{[HL]}{[OH^-]} \right) = \frac{1.15 \times 10^{-5}(0.25)}{6.29 \times 10^{-5}} = 0.0457 \text{ mol dm}^{-3} \]

\[K_{b3} = \frac{[H_3L^2+][OH^-]}{[H_2L^+]}, \quad K_{b3} = \frac{K_W}{K_{a1}} = \frac{10^{-14}}{10^{-2.16}} = 1.45 \times 10^{-12} \]

\[H_2L^+ + H_2O \rightleftharpoons H_3L^2+ + OH^- \]

\[K_{b3} = \frac{[H_3L^2+][OH^-]}{[H_2L^+]} \]

\[[H_3L^2+] = K_{b3} \left(\frac{[H_2L^+]}{[OH^-]} \right) = \frac{1.45 \times 10^{-12}(0.0457)}{6.29 \times 10^{-5}} = 1.05 \times 10^{-9} \text{ mol dm}^{-3} \]

Task 11. Amperometric Titration: Titration of Pb^{2+} with Cr_2O_7^{2-}

11.1) By extrapolating the two straight lines, the titration end-point is located.

11.2) \(\text{Pb}^{2+}(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) \rightleftharpoons \text{PbCr}_2\text{O}_7(s) \)

11.3) \(\text{mol Pb} = \text{mol dichromate} \)

\[0.0020 \text{ mol dm}^{-3} \times 8.0 \text{ cm}^3 = 20.0 \text{ cm}^3 \times C_{\text{lead}} \]

Therefore, \([\text{lead}] = 0.0020 \times 8.0 / 20.0 = 8.0 \times 10^{-4} \text{ mol dm}^{-3} \)
Task 12. Conductometric Titration

12.1) The conductivity value before turning point comes from the mobility of H^+ and Cl^- from HCl. After NaOH was added to the titration vessel, the H^+ reacted with OH^- and the solution conductivity due to H^+ decreases. After the turning point, NaOH becomes excess in solution. The conductivity value increases with amount of added NaOH. The ion mobility of H^+ is higher than that of OH^-, hence the slope of titration curve before and after turning point is different.

12.2) From titration curve, the turning point is the end point, and is at 108 seconds.

Flow rate of NaOH = 3 drops / sec.

Therefore, the volume of NaOH is 108 x 3 = 324 drops =

\[324 \times 0.029 \text{ cm}^3 = 9.39 \text{ cm}^3\]

The concentration of HCl = $9.39 \times 0.100/25 = 0.037 \text{ mol dm}^{-3}$.

Task 13. Titration of Cu and Zn in Metal Alloy

13.1) $Cu(s) + 4\text{HNO}_3(aq) \rightarrow Cu^{2+} + 2\text{NO}_3^- + 2\text{NO}_2(g) + 2\text{H}_2\text{O}(l)$

$Zn + 2\text{HCl} \leftrightarrow Zn^{2+} + H_2(g) + 2\text{Cl}^-$

13.2) Total metal by EDTA titration = mol EDTA used = 33.4 x 0.1/1000 = 3.34x10^{-3} mol

Mol Cu by redox titration

\[2Cu^{2+} + 4\text{I}^- \leftrightarrow CuI(s) + \text{I}_2 \]

\[\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \leftrightarrow 2\text{I}^- + \text{S}_4\text{O}_6^{2-} \]

mol Cu = mol thiosulfate used = 29.35x0.1/1000 = 2.935x10^{-3} mol

grams Cu = $2.935 \times 10^{-3} \text{ mol} \times 63.5 = 0.1864 \text{ grams}$ in 25.00 mL aliquot

Therefore, a 250 cm3 sample solution will contain = 0.1864 x250/25 = 1.864 gram

Thus %w/w Cu = 1.864/2.300 x 100 = 81.0%

mol Zn = total metal – Cu = $3.34 \times 10^{-3} - 2.935 \times 10^{-3} = 4.05 \times 10^{-4}$ mol

grams Zn = $4.05 \times 10^{-4} \text{ mol} \times 65.4 = 0.2649 \times 10^{-2}$ grams in 25.00 aliquot

Therefore, 250 cm3 sample solution will contain = $0.2649 \times 10^{-2} \times 250/25 = 0.2649$ gram

Thus %w/w Zn = 0.2649/2.300 x 100 = 11.5%
Task 14. Spectrophotometric Determination of Iron

14.1)

a) At \(C_L = 2.20 \times 10^{-2} \ \text{mol dm}^{-3} \), \([M \text{L}_3] = 6.25 \times 10^{-5} \)

\[A = \varepsilon b C, \]

therefore \(\varepsilon = \frac{A}{bC} = 0.750/6.25 \times 10^{-5} = 12,000 \ \text{L mol}^{-1} \ \text{cm}^{-1} \)

b) \(M + 3L \rightleftharpoons M\text{L}_3 \)

\[K_f = \frac{[M \text{L}_3]}{[M] [L]^3} \quad (1) \]

at \(C_L = 9.25 \times 10^{-5} \ \text{M}, \ [M \text{L}_3] = 0.360 / 12000 \)

\[[M \text{L}_3] = 3.0 \times 10^{-5} \ \text{mol dm}^{-3} \quad (2) \]

therefore,

\[[M] = (3.25 \times 10^{-5}) - (3.0 \times 10^{-5}) \]

(3)

\[[L] = (9.25 \times 10^{-5}) - 3 \times (3.0 \times 10^{-5}) \]

(4)

Hence

\[K_f = \frac{(3.0 \times 10^{-5})}{(0.25 \times 10^{-5}) (0.25 \times 10^{-5})^3} \]

\[K_f = 7.68 \times 10^{17} \ \text{dm}^3 \ \text{mol}^{-3} \]

14.2)

mole of C : mole of H : mole of N = 80/12 : 4.44/1 : 15.56/14

= 6.67 : 4.44 : 1.11

= 6 : 4 : 1

therefore, the empirical formula of L is \(\text{C}_6\text{H}_4\text{N} \)

The empirical molar mass = \((6 \times 12) + (4 \times 1) + (1 \times 14) = 90 \)

molar mass/ empirical molar mass = 180 / 2

Therefore, the molecular formula of L is \(\text{C}_{12}\text{H}_8\text{N}_2 \).
14.3) d-orbital splitting diagram for ML_3

\[
\begin{align*}
\text{d-orbital} & \quad \text{d}_z^2, \text{d}^2 & \quad \text{d}_x^2 - \text{y}^2 & \quad \text{d}_z^2 \\
\text{d}_{xy} & \quad \text{d}_{xz} & \quad \text{d}_{yz}
\end{align*}
\]

Octahedral field

Possible isomers of Fe^{2+} complexes

ML :

\[
\text{ML}_2 :
\]

\[
\text{ML}_3 :
\]

Δ_0 of $\text{ML} < \text{ML}_2 < \text{ML}_3$ \quad \therefore H$_2$O is a weaker field ligand as compared with bipyridine.
14.4)

\[A = \varepsilon b C, \text{ therefore } C = \frac{A}{\varepsilon b} = \frac{0.550}{12000} = 4.58 \times 10^{-5} \text{ mol dm}^{-3} \]

The concentration of dialyzable iron is

\[4.58 \times 10^{-5} \text{ mol dm}^{-3} \times 50.00/5.00 = 4.58 \times 10^{-4} \text{ mol dm}^{-3} \]

\[4.58 \times 10^{-4} \text{ mol dm}^{-3} \times 55.845 \text{ g mol}^{-1} \times 1000 \text{ mg g}^{-1} = 25.58 \text{ mg dm}^{-3} \]

14.5)

From 14.4), the concentration of dialyzable iron is 25.58 mg dm\(^{-3}\) which is also equal to the concentration of iron inside the dialysis bag.

The total volume is 12.50 cm\(^3\) (inside the dialysis bag) + 20.00 cm\(^3\) (outside the bag)

= 32.50 cm\(^3\).

Therefore, the total amount of digestible iron is

\[(25.58 \text{ mg dm}^{-3} \times 32.50 \text{ cm}^3) / (1000 \text{ cm}^3 \text{ dm}^{-3}) = 0.8314 \text{ mg} \]

For the supplement of 0.4215 g, the iron content is 0.8314 mg

For the supplement of 1.0000 g, the iron content is 0.8314 mg x 1.0000 g / 0.4215 g

= 1.972 mg

Task 15. Basic Electrochemistry

15.1)

Anode: \(Mn^{2+} + 4H_2O \rightleftharpoons MnO_4^- + 8H^+ + 5e^- \)

Cathode: \(5Ce^{4+} + 5e^- \rightleftharpoons 5Ce^{3+} \)

Net: \(Mn^{2+} + 4H_2O + 5Ce^{4+} \rightleftharpoons MnO_4^- + 8H^+ + 5Ce^{3+} \)

\[E^{\circ}_\text{cell} = E^{\circ}_\text{cathode} - E^{\circ}_\text{anode} \]

\[E^{\circ}_\text{cell} = 1.70 - 1.507 = 0.193 \text{V} \]

\[E^{\circ}_\text{cell} = \frac{0.05916}{n} \log K \]

\[0.193 = \frac{0.05916}{5} \log K \]

\[K = 2.05 \times 10^{16} \]
15.2)

\[5 \text{ mg Ce}^{4+} \left(\frac{1 \text{ g}}{1000 \text{ mg}} \right) \left(\frac{1 \text{ mol Ce}^{4+}}{140.12 \text{ g Ce}^{4+}} \right) \left(\frac{5 \text{ mol e}^-}{5 \text{ mol Ce}^{4+}} \right) \left(\frac{96,485 C}{1 \text{ mol e}^-} \right) = 3.44 \text{ C} \]

15.3)

\[E_{\text{cell}} = E'_{\text{cell}} - \frac{0.05916}{n} \log Q \]

Where \(Q \) is a reaction quotient.

\[E_{\text{cell}} = E'_{\text{cell}} - \frac{0.05916}{5} \log \left[\frac{[\text{MnO}_4^-][\text{H}^+][\text{Ce}^{5+}]^5}{[\text{Mn}^{2+}][\text{Ce}^{4+}]^5} \right] \]

\[E_{\text{cell}} = 0.193 - \frac{0.05916}{5} \log \left[\frac{0.001[0.01]^5}{0.002[0.01]^5} \right] \]

\[E_{\text{cell}} = 0.481 \text{ V} \]

Task 16. Calculation of Concentration

16.1) mol Cu in CuCl\(_2\) 1.345 g = 1.345 g/ (63.55 + 2(35.45) g mol\(^{-1}\)) = 0.0100 mol Cu

mol Cu in 50.00 cm\(^3\) of CuSO\(_4\) 31.9 g dm\(^{-3}\)

\[= (50 \text{ cm}^3 /1000 \text{ cm}^3 \text{ dm}^3) \times (31.9 \text{ g dm}^3 /159.62 \text{ g mol}^{-1}) = 0.00999 \text{ mol Cu} \]

Therefore, the total mol Cu is 0.0100 + 0.00999 = 0.01999 = 0.02 mol

500 cm\(^3\) contains 0.02 mol Cu, therefore the concentration is 0.04 mol dm\(^{-3}\).

16.2) The concentration of Cu in 100.0 cm\(^3\)

\[= (25.00 \text{ cm}^3 /100.0 \text{ cm}^3) \times 0.04 \text{ mol dm}^3 = 0.01 \text{ mol dm}^3 \text{ or } 10^{-2} \text{ mol dm}^3 \]

pH = 8.0, implying that [OH\(^-\)] = 10\(^{-6}\) mol dm\(^{-3}\)

\[[\text{Cu}^{2+}][\text{OH}^-]^2 = (10^{-2})(10^{-6})^2 = 10^{-14} \text{ which is greater than } K_{SP(\text{Cu(OH})_2)} \text{, i.e., } 4.8 \times 10^{-20} \]

Therefore, the precipitate of Cu(OH)\(_2\) is formed.
Task 17. Small Molecule Activation by Frustrated Lewis Pairs

17.1) \[\text{C}_6\text{F}_5\text{Br} \xrightarrow{1. \text{n-BuLi}} \xrightarrow{2. 1/3 \text{BCl}_3} 1/3 \text{B(C}_6\text{F}_5)_3 \]

17.2) \[\text{PH(t-Bu)}_2 + \text{B(C}_6\text{F}_5)_3 \rightarrow (\text{t-Bu})_2\text{HP} - \text{BF(C}_6\text{F}_5)_2 \]

17.3) \[(\text{t-Bu})_2\text{HP} - \text{BF(C}_6\text{F}_5)_2 \xrightarrow{\text{Me}_2\text{SiHCl}} \text{Me}_2\text{SiFCl} \rightarrow (\text{t-Bu})_2\text{HP} - \text{BH(C}_6\text{F}_5)_2 \]

17.4) \[\text{B(C}_6\text{F}_5)_3 + \text{P(t-Bu)}_3 \xrightarrow{\text{H}_2} \xrightarrow{\text{-H}_2} \left[\begin{array}{c} \text{HP(t-Bu)}_3 \\ \text{HB(C}_6\text{F}_5)_3 \end{array} \right] \]

17.5) \[\text{B(C}_6\text{F}_5)_3 + \text{P(t-Bu)}_3 \xrightarrow{\text{HD}} \xrightarrow{\text{-HD}} \left[\begin{array}{c} \text{DP(t-Bu)}_3 \\ \text{HB(C}_6\text{F}_5)_3 \\ \text{HP(t-Bu)}_3 \\ \text{DB(C}_6\text{F}_5)_3 \end{array} \right] \]
17.6)

\[
\text{B(C}_6\text{F}_5)_3 + \text{P(t-Bu)}_3 \rightleftharpoons \begin{array}{c}
\text{(C}_6\text{F}_5)\text{B} \\
\text{P(t-Bu)}_3
\end{array}
\]

17.7)

\[
\text{(C}_6\text{F}_5)_3\text{B} \text{P(t-Bu)}_3 \rightleftharpoons \text{NO} \rightarrow \begin{array}{c}
\text{(C}_6\text{F}_5)_3\text{B} \\
\text{O} \\
\text{NO} \\
\text{P(t-Bu)}_3
\end{array}
\]

17.8)

\[
\text{B(C}_6\text{F}_5)_3 + \text{P(t-Bu)}_3 \rightleftharpoons \text{CO}_2 \rightarrow \begin{array}{c}
\text{(C}_6\text{F}_5)_3\text{B} \\
\text{CO}_2 \\
\text{P(t-Bu)}_3
\end{array}
\]

Task 18. Silver Iodide

18.1) 0

The reduction of Ag\(^+\) to Ag\(0\) causes the change of color.

18.2) AgF > AgCl > AgBr > AgI

The stronger interaction between Ag\(^+\) and I\(^-\) as well as the low hydration energy of I\(^-\) result in the poor solubility of AgI. The smaller size of other halide ions led to poorer interaction with Ag\(^+\); hence, higher solubility.

18.3) −0.028 V

\[
\Delta G^o = -nFE^o
\]

For (a),

\[
\Delta G^o_a = -(-1)(96,500)(0.80) = -77,200 \text{ J (mol Ag)}^{-1}
\]

For (c),

\[
\Delta G^o_c = -(8.314)(298)(\ln10^{14}) = -79,867 \text{ J mol}^{-1}
\]

The reduction half reaction of [AgI\(_3\)]\(^2^-\):

(d) [AgI\(_3\)]\(^2^-\) (aq) + e\(^-\) \rightleftharpoons Ag (s) + 3 I\(^-\) (aq)

Eqn (d) = (a) − (c)
Therefore, \[\Delta G_d = \Delta G_{d_a} - \Delta G_{d_c} = -77,200 - (-79,867) = 2,667 \text{ J mol}^{-1} \]
\[E^o = -\frac{\Delta G_d}{(nF)} = -(2,667)/(96,500) = -0.028 \text{ V} \]

18.4) For trigonal planar,

\[
\begin{array}{cccc}
& & \uparrow & \uparrow \\
& \uparrow & & \\
& & \downarrow & \downarrow \\
E & & & \\
& & \downarrow & \downarrow \\
& & & \uparrow & \uparrow \\
& & \downarrow & \downarrow \\
& & & \uparrow & \uparrow \\
& & \downarrow & \downarrow \\
\end{array}
\]

The ligands lie in the xy plane, then the \(d_{x^2-y^2} \) and \(d_{xy} \) orbitals that have their electron density concentrated in this plane will have the highest energy. The \(d_{xz} \) and \(d_{yz} \) orbitals have their electron density out of this xy plane, so their energies are the lowest. The \(d_{z^2} \) orbital has its electron density mostly out of the xy plane, but there is a ring of electron density in the xy plane, so the \(d_{z^2} \) orbital will have energy higher than the \(d_{xz} \) and \(d_{yz} \) orbitals but still lower than the \(d_{x^2-y^2} \) and \(d_{xy} \) orbitals. In addition, the number of \(d \)-electrons for silver in \([\text{AgI}_3]^{2-} \) is 10. Therefore, all \(d \)-orbitals should be filled.

Task 19. Perovskite Structure

19.1) Number of \(\text{Ca}^{2+} \) ions: 8 corners x 1/8 ion \(\text{Ca}^{2+} \)/corner = 1

Number of \(\text{O}^{2-} \) ions: 6 cube faces x 1/2 \(\text{O}^{2-} \) ion/cube face = 3

Number of \(\text{Ti}^{4+} \) ions: one \(\text{Ti}^{4+} \) ion in the cube center = 1

Therefore, the empirical formula is \(\text{CaTiO}_3 \).

19.2) (1) octahedral hole (4 per unit cell), (2) tetrahedral hole (8 per unit cell)

19.3) Octahedral hole
Task 20. Quantum Numbers and Atomic Orbitals

20.1) (i) $l = n$ is not allowed. For a certain value of n, l can be any value from 0 to $n-1$ (i.e., less than n).

(ii) $m_l = -2$ is not possible for $l = 1$, because the magnitude of the m_l must not be greater than l. (For a certain value of l, $m_l = l, l-1, \ldots, -l$.)

(iii) $l = -1$ is not possible. l cannot have a negative value.

20.2) (i) 6d

(ii) 4f

(iii) 6p

20.3) (i) five

(ii) seven

(iii) one

Task 21. Radioactivity of Iodine and Nuclear Equations

21.1) (i) After 2 half-lives, the remaining concentration of I-131 will be as follows:

\[
\text{[I-131]} \quad \begin{array}{c}
0.1 \text{ mol dm}^{-3} \\
\quad \rightarrow \\
0.05 \text{ mol dm}^{-3} \\
\quad \rightarrow \\
0.025 \text{ mol dm}^{-3}
\end{array}
\]

(ii) After 40 days which is equal to 5 half-lives, the remaining concentration of I-131 will be as follows:

\[
\text{[I-131]} \\
\begin{array}{c}
0.1 \text{ mol dm}^{-3} \\
\quad \rightarrow \\
0.05 \text{ mol dm}^{-3} \\
\quad \rightarrow \\
0.025 \text{ mol dm}^{-3}
\end{array}
\]

\[
\underbrace{3.125 \times 10^{-3} \text{ mol dm}^{-3}}_{0.0125 \text{ mol dm}^{-3}} \quad \begin{array}{c}
\quad \leftarrow \\
6.25 \times 10^{-3} \text{ mol dm}^{-3}
\end{array}
\]

21.2) (i) $^{14}_{6}$C

(ii) $^{0}_{1}e$ or β^+

(iii) $^{55}_{25}$Mn

(iv) $^{238}_{92}$U

(v) $^{1}_{0}$n

(vi) $^{110}_{47}$Ag

(vii) $^{96}_{39}$Y

(viii) $^{4}_{2}$He or α
Task 22. Structure and Chemistry of Sodium Chloride

22.1) (i) 6 and 6
(ii) 4
(iii) 2.21 g cm\(^{-3}\)

Density = \(\frac{m}{V}\)

\[V = a^3 = (560 \text{ pm})^3 = 1.76 \times 10^{-22} \text{ cm}^3 \]

\[mass = \frac{(4 \times 58.5 \text{ g})}{(6.022 \times 10^{23})} = 3.89 \times 10^{-22} \text{ g} \]

Density = \(\frac{3.89 \times 10^{-22} \text{ g}}{1.76 \times 10^{-22} \text{ cm}^3} = 2.21 \text{ g cm}^{-3}\)

22.2) (i) \(n = 3, l = 0\)
(ii) Na is larger than Cl, but Cl\(^-\) is larger than Na\(^+\).
(iii) \(\cdot\dot{\cdot}\)
(iv) -787 kJ mol\(^{-1}\)

\[\Delta H_{overall} = -411 \text{ kJ mol}^{-1} = \Delta H_{sublimation} \text{ for Na} + IE_1 \text{ for Na} + \frac{1}{2}(\text{Cl-Cl dissociation}) + \text{Electron affinity of Cl} + \text{lattice energy} \]

-411 kJ mol\(^{-1}\) = 107 kJ mol\(^{-1}\) + \(\frac{1}{2}(224)\) kJ mol\(^{-1}\) + 496 kJ mol\(^{-1}\) - 349 kJ mol\(^{-1}\) + lattice energy

lattice energy = -787 kJ mol\(^{-1}\)

22.3) (i) Br\(_2(l) + Cl^- (aq) \rightarrow\) no reaction
(ii) Cl\(^-\)(aq) + Ag\(^+\)(aq) \rightarrow AgCl(s)
(iii) Yellow
Task 23. Natural Chelator from Shrimp Shell

23.1) The preferred binding sites are indicated in the circles as follows:

23.2) Pb^{2+} is a soft metal ion so it prefers to form bond with sulfur. This helps PMCS adsorb Pb^{2+} better.

23.3) \textit{meso}-tetra(p-carboxyphenyl)porphyrin can form ester bond with chitosan as shown in the proposed structure below:
Or amide bonds are formed as below:
23.4) One of the structures in question 23.3 was chosen to bond with Fe^{2+} as the proposed structure below.

![Structure Diagram](image)

The two vacant axial sites are bonding with water molecules.

Assuming that the crystal fields are equivalent along the x, y, and z axes, the splitting diagram of $\text{Fe}^{2+} d$ orbitals is shown below:

![Splitting Diagram](image)

Octahedral field
Task 24. Compound Identification and Related Chemistry

24.1) MCl₃ and M = Al

Theoretically, the maximum amount of the product is obtained when the mole fraction of M and Cl₂ are in the correct stoichiometric ratio. Based on the experiments, M:Cl₂ = 0.4:0.6 or 2/3 is the stoichiometric ratio needed to form MₓClᵧ. Thus, the equation is as follows:

\[2 \text{M} + 3 \text{Cl}_2 \rightarrow 2 \text{MCl}_3. \]

∴ the chemical formula of MₓClᵧ = MCl₃

Since 0.4 mole of M generates 0.4 mole of MCl₃, the molar mass of MCl₃ and atomic mass of M can be derived:

Molar mass of MCl₃ = 53.3 g/0.40 mol = 133 g mol⁻¹

Atomic mass of M = 133 – (3 × atomic mass Cl) = 133 – (3 × 35.45) = 26.9 g mol⁻¹

∴ M = Al

24.2) (i) AlCl₃ + 3 H₂O → Al(OH)₃ + 3 HCl
 (ii) 2 AlCl₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 HCl

24.3) ![Chemical structure image]
Task 25. Isomerism of Octahedral Fe(II) Complexes

25.1)

\begin{align*}
\text{isomer A} & : \text{cis(Cl,Cl)} \\
\text{trans}(N',N'), \text{cis}(N,N)
\end{align*}

\begin{align*}
\text{isomer A}^* & : \text{cis(Cl,Cl)} \\
\text{trans}(N',N'), \text{cis}(N,N)
\end{align*}

\begin{align*}
\text{isomer B} & : \text{cis(Cl,Cl)} \\
\text{cis}(N',N'), \text{trans}(N,N)
\end{align*}

\begin{align*}
\text{isomer B}^* & : \text{cis(Cl,Cl)} \\
\text{cis}(N',N'), \text{trans}(N,N)
\end{align*}

\begin{align*}
\text{isomer C} & : \text{trans(Cl,Cl)} \\
\text{cis}(N',N'), \text{cis}(N,N)
\end{align*}

\begin{align*}
\text{isomer D} & : \text{trans(Cl,Cl)} \\
\text{trans}(N',N'), \text{trans}(N,N)
\end{align*}

\begin{align*}
\text{isomer E} & : \text{cis(Cl,Cl)} \\
\text{cis}(N',N'), \text{cis}(N,N)
\end{align*}

\begin{align*}
\text{isomer E}^* & : \text{cis(Cl,Cl)} \\
\text{cis}(N',N'), \text{cis}(N,N)
\end{align*}

25.2)

isomers A, A*, B, B*, E, and E*
Task 26. Stoichiometry and Structure Determination

26.1) \(\text{C}_9\text{H}_{10}\text{O}_3 \)

Solution: \(\% \text{ by weight C : H : O} = 65.0 : 6.10 : 28.9 \)

\[\% \text{ by mol C : H : O} = \frac{65.0}{12.0} : \frac{6.10}{1.01} : \frac{28.9}{16.0} \]

\[= 5.42 : 6.04 : 1.81 \]

\(\therefore \) empirical formula C : H : O = 9 : 10 : 3

26.2)

\[
\begin{align*}
\text{H}_3\text{CO} & \quad \text{O} \\
\text{H} & \quad \text{O} \\
\text{CH}_3 & \quad \text{H} \\
\end{align*}
\]

26.3)

\(X = \)

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{N} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{CH}_3 & \quad \text{H}_3\text{CO} \\
\end{align*}
\]

\(\gamma = \text{H}^\cdot\text{O}^\cdot\text{H} \)

\(Z = \)

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{N} \\
\text{Cu} & \quad \text{N} \\
\text{CH}_3 & \quad \text{H}_3\text{CO} \\
\text{O} & \quad \text{O} \\
\text{CH}_3 & \quad \text{H}_3\text{CO} \\
\end{align*}
\]
Task 27. Atropine

27.1)

27.2)

27.3)

27.4)
Task 28. Synthesis of Building Blocks for Fluorescent Markers

Compounds A-I are shown below:
Task 29. Synthesis towards Anatoxin-a

\[A: C_{14}H_{15}NO_5 \]

1. \(\text{MgBr} \)
2. \(H^+ \)

\[B: C_{18}H_{23}NO_5 \]

\[\text{reductive amination} \]

\[C: C_{19}H_{23}NO_4 \]

\[i-\text{Bu}_2\text{AlH} \]

\[D: C_{17}H_{21}NO_3 \]

\[\text{Cs}_2\text{CO}_3 \]

\[E: C_{18}H_{21}NO_2 \]

\[1. \text{NaN(SiMe}_3)_2 \]
\[2. \text{MeOTf} \]

\[F: C_{19}H_{23}NO_2 \]

\[\text{enyne metathesis} \]

\[G: C_{19}H_{23}NO_2 \]

\[1. \text{OsO}_4 \]
\[2. \text{NaIO}_4 \]

\[H: C_{19}H_{21}NO_3 \]

\[\text{Me}_3\text{Si} \]

\[I: C_{10}H_{15}NO \]
Task 30. Total Synthesis of Illudin C

The structures of A, B, C and D:

```
O
TES

POBr₃/DMF
CH₂Cl₂

HOC

Br

NH₂OH·HCl
EtOH

1) 3.0 equiv t-BuLi, THF
-78 °C, then
2) workup

HO

N

1) Ra-Ni, H₂
2) B(OH)₃ MeOH/H₂O

HO

CH₂Cl₂, DBU

chloramine-T
EtOH, 40 °C

O

Illudin C
```

Task 31. Total Synthesis of µ-Opioid Receptor (MOR) Agonists

```

A

(EtO)₂P(O)CH₂CO₂Me
NaH (11.2 equiv)

1,2-DME
0 °C to rt, 3 h

C₂₉H₃₉N₂O₃S
E:Z mixture
37%

(one of the stereogenic centers is epimerized)

OMe

N

Ts

H

CO₂Me

1) LDA
2) HCO₂Me

C₂₂H₂₈N₂O₄
E:Z mixture
57%

1) NaOMe, MeOH
2) (MeO)₂SO₂ benzene
3) Separation

C₂₃H₃₀N₂O₄
(-)-mitragynine
27%

+ (Z)-mitragynine
31%
```

Solutions to the Preparatory problems: 49th IChO, Thailand 2017
Task 32. Pericyclic Reaction

32.1)

\[
\begin{array}{c}
\text{H}_2\text{C} \\
\text{TMSO} \quad \text{H} \\
\end{array}
\xrightarrow{1. \text{--} \text{Li}}
\begin{array}{c}
\text{C} \\
\text{G} \\
\end{array}
\xrightarrow{2. -78^\circ\text{C to rt}}
\begin{array}{c}
\text{H}_3\text{C} \\
\text{TMSO} \\
\end{array}
\xrightarrow{3. \text{aq. NaHCO}_3}
\begin{array}{c}
\text{Intermediate A} \\
\end{array}
\]

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{C} \\
\text{D} \\
\text{E} \\
\text{F} \\
\text{G} \\
\end{array}
\xrightarrow{\text{oxy-Cope rearrangement}}
\begin{array}{c}
\text{Intermediate B} \\
(\text{Enolate}) \\
\end{array}
\]

Triquinane

32.2)

(i) Structures of compounds C-G

\[
\begin{array}{c}
\text{MeO} \\
\text{C} \\
\text{CN} \\
\end{array}
\]

\[
\begin{array}{c}
\text{MeO} \\
\text{D} \\
\end{array}
\]

\[
\begin{array}{c}
\text{MeO} \\
\text{E} \\
\end{array}
\]

\[
\begin{array}{c}
\text{MeO} \\
\text{F} \\
\end{array}
\]

\[
\begin{array}{c}
\text{MeO} \\
\text{G} \\
\end{array}
\]
(ii) Either position on compound 1 is correct.

(iii) Two.

Reaction between 1 and 2 will give a pair of enantiomers which are inseparable.
(Note: the two enantiomers can be resolved but this process is not mentioned in the context.) The subsequent processes, although generated a few new chiral centers, employed achiral reagent and the newly formed stereocenters were controlled by the existing stereochemistry. Therefore, stereochemical information was carried over from compound C to compound 3.

32.3)

(i)

(ii) Racemic mixture of H will give product I which has a plane of symmetry. Therefore, reduction of I (only a stereoisomer) will give only 1 possible product J.

Note: Compound I has a plane of symmetry, thus its mirror image (compound I’) is identical (meso-compound).
Task 33. Stereoisomers without Stereocenter

Hint: Student is encouraged to use chemistry model to figure out the plane of symmetry and the C_2–symmetry in each molecule.

33.1) (i) From the possible enantiomeric pair,

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

The molecule has a plane of symmetry, therefore, the structure is achiral.

(ii) From the possible enantiomeric pair,

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{Cl} & \quad \text{Cl} \\
\end{align*}
\]

There is no plane of symmetry in these two molecules. Therefore, these two mirror image structures are non-superimposable. The structure is chiral.

(iii) From the structure of cumulene,

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{Cl} \\
\text{H} & \quad \text{Cl} \\
\end{align*}
\]

This molecule is flat. As a result, there is a plane of symmetry in this molecule. Consequently, its mirror image is achiral.
(iv) From the possible enantiomeric pair,

![Diagram](attachment:image.png)

There is no plane of symmetry in these two molecules. Therefore, these two mirror image structures are non-superimposable. The structure is chiral.

33.2 (i)

![Diagram](attachment:image.png)

trans-cyclooctene
trans-cyclononene

Enantiomers of *trans*-cyclooctene and *trans*-cyclononene are shown above. The two different structures are mirror images of each other and they are non-superimposable.

(ii) The enantiomers of both cycloalkanes are configurational isomers. The enantiomers can be interconverted *via* the ring flipping, similar to that of the chair cyclohexane. The *trans* double bond adds a considerable degree of rigidity to the ring. Since the *trans*-cyclononene has more carbon atoms so it is more flexible and can undergo the configuration inter-conversion more readily.